

We connect your power

We are Lovink Enertech. We want to work with you to help create an efficient and safe society. Our part involves supplying reliable and innovative solutions for constructing, improving and maintaining your electricity systems.

Welcome to a world where everything is connected.

We develop, produce and supply innovative and reliable cable accessories to grid operators, industrial companies, contractors and engineering firms. Besides that, our desire is to offer you additional support with specialized advice and guidance. So we are both contributing to a world which is continuously on the move.

Our accessories score particularly well when it comes to 'failure-free operation.' Thanks to an extremely low failure rate, our LoviSil® product group heads the international

ranking for best category performance. We are also able to present similar scores for our other product groups.

Due to their smart, intuitive design and universal technology for all voltage levels, our cable accessories are easy to install. This helps to save time and keep the risk of errors to a minimum. Together with a minimum service life of 40 years, high mechanical strength and exceptional resistance to environmental factors, this adds up to a very attractive Total Cost of Ownership (TCO).

The best results are obtained together. Your situation, preferences and objectives form a foundation for the solutions and support we offer. We supply high quality standard accessories wherever possible; we provide tailor-made solutions wherever necessary or preferred.

As a supplier of cable accessories, we can offer a comprehensive range of products from 1 to 36 kV. And there's more. We can help to optimize your ordering and administration processes and we offer storage, management and distribution solutions to give you trouble free logistics. Customer specific solutions, JIT and last minute deliveries: we will quickly respond to your needs.

Specially trained people at Lovink Enertech make sure your staff is able to effectively install our products. Familiarization courses are designed to enable jointers, qualified at the relevant voltages, to understand the practical and theoretical aspects of Lovink technology. Besides, our special support engineers can offer jointers assistance in the field.

The Lovink Enertech brand is synonymous with intelligent, innovative and cost-effective solutions for the worldwide energy sector, the industrial sector and the sustainable energy market. We are continuously developing, supporting and implementing new ideas. These solutions continue to connect us to your dynamic assets. We connect your power!

The electricity market is developing extremely quickly. The ecological impact of our infrastructure has been placed in the spotlight and terms like smart grids, energy transition and green nets have become part of everyday vernacular. Technological innovation is the answer to these developments, and this is an area where Lovink Enertech fulfils an important role.

Tomorrow's energy supply.

Changes in the grid, such as the introduction of sustainable energy production, are placing a greater burden on cable networks. As a result, cable joints must be able to resist these changing influences.

Cable joints are important links within cable networks. LoviSil[®], the liquid silicone-based technology we have developed, is able to offer a reliable solution to these challenges.

Our development strategy focuses on reliability, sustainability and ease of assembly. We are using the latest technologies, and a team of smart engineers, to create products of the future.

This is Lovink Enertech's way of helping to realize reliable electricity grids, which help to ensure a stable economy and protect our environment.

7

Content

1. LoviSil®

Cable joints for paper-insulated and polymeric cables

6/10 (12) kV – 18/30 (36) kV

11-21

2. LoviFlex®

Terminations for polymeric cables

6/10 (12) kV – 18/30 (36) kV

23-25

3. Accessories

Protolin® resin Tools Connectors Cable lugs Clamps and roll springs Wrapping tapes

A ROYAL LOVINK INDUSTRIES COMPANY

Transition joints Airport

Straight through joints high water table

Branch joints

1

LoviSil® medium voltage joints 12-36 kV

Oil refill joints in switch gear station

Feed-in joints Solar park

Cross-bonding joints

LoviSil[®] medium voltage cable joints have been developed featuring fluid silicones that can boast 30 years proven field experience with an extremely low failure rate. Thanks to the construction and characteristics of the silicone based insulation material, LoviSil[®] joints offer a reliable connection with polymeric and especially paper-insulated cables.

Applications

LoviSil® cable joints are available as transition, straight through and branch joints. In addition Lovink Enertech has also applied LoviSil® technology for cross-bonding joints, oil refill joints and feed-in joints.

Electrical insulation

The principle dielectric is contained within an ABS inner shell, utilizing a combination of polymeric spacers (12-24 kV) or silicone sleeves (36 kV) and a high-grade silicone-based compound. This compound remains fluid, thus minimizing the risk of discharge from dried out papers.

Mechanical protection

Mechanical protection is provided by a strong ABS outer shell, filled with two-component polyurethane resin. This resin provides long-term moisture resistance. A copper wire mesh serves as the electrical screen.

Earth and screen protection

The polyurethane resin also provides a tough environmental protection for the main earth bond and screen components. With its searching characteristics, it encapsulates every item thus providing excellent corrosion resistance.

Sealing

Exceptional bonding of polyurethane resin to ABS provides a guaranteed seal to the outer shell. Should any moisture penetrate through to the inner joint, a soft, water resistant and perfectly insulating rubber is formed around the cores. This cured LoviSil® provides an additional layer of protection against the effects of moisture ingress.

Equivalent Er value

The dielectric constant (E_r value) of liquid silicone is practically identical to the insulation of polymeric cables (XLPE/ EPR) and remains so even when cured. This provides a consistently homogeneous electric field.

Universal: from one basic concept all cables can be connected

Reliability & Quality: fluid silicon technology **Cost savings:** extremely low failure rate

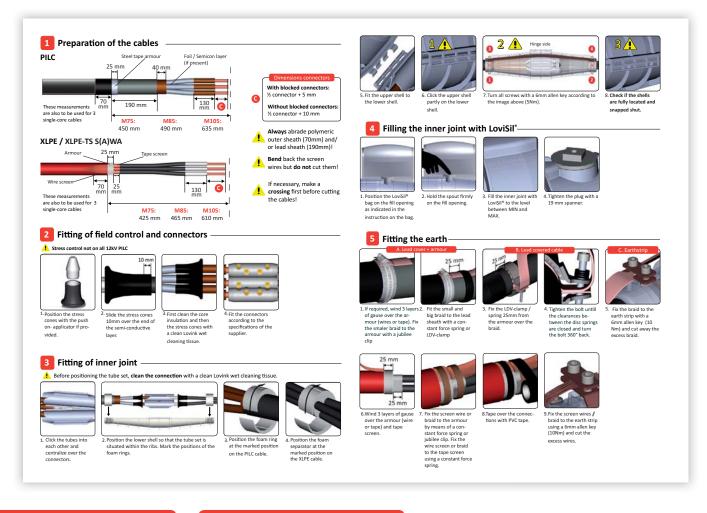
Protection of cables

When applied to paper-insulated cables, the silicone compound performs the same insulating function as cable grease. This guarantees the long-term quality of connection.

Tests

LoviSil® cable joints have been tested in accordance with HD 628 / EN IEC 61442 and HD 629 (CENELEC). The tests were executed under water pressure of 2 bar thus meeting NEN 3628 and NEN 3609. LoviSil® joints are extremely suited to applications in areas of waterlogged soils and high water tables.

Installation


The installation accomplished in 7 steps:

- 1. Cable preparation
- 2. Fitting of field control and connectors
- 3. Fitting of inner joint
- 4. Filling inner joint LoviSil®
- 5. Fitting earth and screen
- 6. Assembly of outer joint
- 7. Filling outer joint with Protolin®

LoviSil[®] joints are distinctive for their ease of installation. Installation steps are intuitive, parts are user-friendly by design and pre-installed wherever possible. The bags of Protolin[®] resin and LoviSil[®] feature handles and filling spouts.

During the filling process, levels can be controlled effectively. The transparent inner joint and red outer joint are provided with level indicators. Protolin[®] resin is provided with a colour indicator, which allows jointers to see when the resin has been properly mixed.

Example installation instruction

Installation: easy, intuitive and fast **Proven technology:** more than 30 years field experience The installation instructions are logical and clear. Simple images, some supported with text, guide the jointer step by step through installation to a satisfactory conclusion.

- Base module : This module contains all the "hardware" for the joint. Selection of the base module is dependent on
- cable sizes. Resin module : This module contains all filling compounds for the joint, including

the LoviSil[®] liquid.

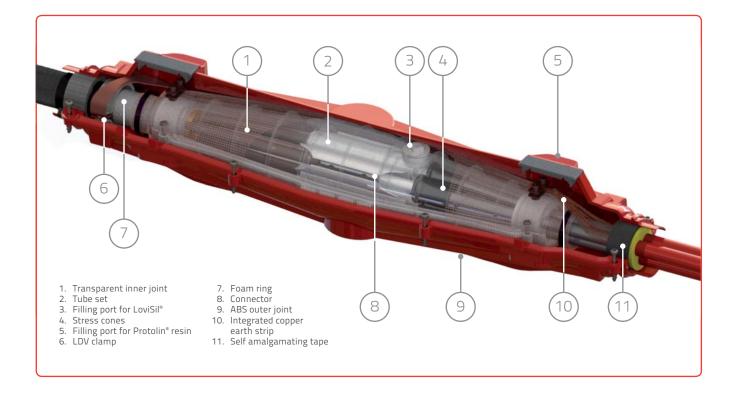
Cable module : This module contains items for application on the cables to be connected.

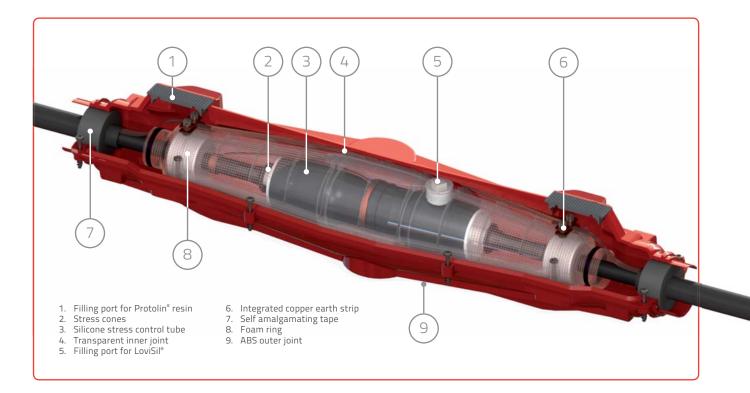
Bespoke cable modules for unique applications are available.

The modular system offers logistic benefits, because it is not necessary to keep separate joints in stock for each cable combination. From one basic concept, all cable types can be connected.

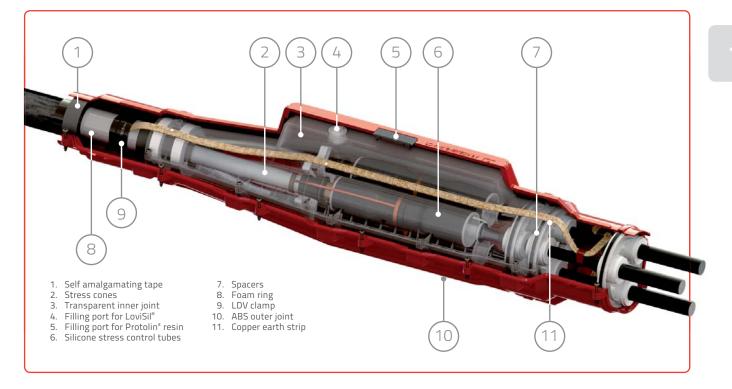
Product overview LoviSil® M Transition and straight through joints

The transition and straight through joints of Lovink Enertech are universal and can be used on paper-insulated (PILC or PICAS) and polymeric (XLPE or EPR) cables regardless of cable type: 1 and 3-core, large and small cross-sections and different armours. Bespoke cable modules are available to cater for uncommon cable types.


Voltage	Туре	Cable	Conductor size (mm²)*	Diameter conductor crossed conductors (mm²)	Max. cross section for crossed cores (mm)
12 kV	M75	Polymeric/paper (1-core) Polymeric (3-core) Polymeric (3 x 1-core) Paper (3-core)	95 - 630 35 - 150 35 - 150 35 - 150	N/A 35 - 120 N/A 35 - 120	72 72 33,5 72
	M85	Polymeric/paper (1-core) Polymeric (3-core) Polymeric (3 x 1-core) Paper (3-core)	800-1.000 95 - 240 95 - 240 95 - 240	N/A 95 - 185 N/A 95 - 185	82 82 38 82
	M105	Polymeric/paper (1-core) Polymeric (3-core) Polymeric (3 x 1-core) Paper (3-core)	800 - 1.000 95 - 400 95 - 400 95 - 400	N/A 300 N/A 300	105 105 49 105
	MK125	Polymeric (3 x 1-core) Paper (3-core)	95 - 800 95 - 400	N/A N/A	58 120
24 kV	M75	Polymeric/paper (1-core)	95 - 240	N/A	72
	M85	Polymeric/paper (1-core) Polymeric (3 x 1-core) Paper (3-core)	300 - 630 95-300 95-300	N/A N/A 95 - 150	82 38 82
	M105	Polymeric/paper (1-core) Polymeric (3 x 1-core) Paper	800 - 1.000 95 - 400 95 - 400	N/A N/A 240	105 49 105
	MK125	Polymeric (3 x 1-core) Paper (3-core)	95 - 800 95 - 400	N/A N/A	58 120
36 kV	M85	Polymeric/paper (1-core)	70 - 400	N/A	82
	M105	Polymeric/paper (1-core)	500 - 1.000	N/A	105
	MK125	Polymeric/paper (1-core) Polymeric/paper (3-core)	70 - 400 70 - 400	N/A N/A	58 120


* Attention: Dependent on the outer sheath diameter and selected cable module. The above sizes concern cables that fit into the joint. Different cables on request.

Build up LoviSil® Transition and straight through joints


LoviSil[®] M75-M105 (12-24 kV)

LoviSil[®] M85-M105 (36 kV)

LoviSil[®] MK125 (36 kV)

Dimensions	Туре	A (mm)	B (mm)
	M75 M85 M105	975 1.055 1.345	200 226 290
	MK125	1.600	310

Stop-End joint > With the stop end module, a standard joint becomes a pot-end for cables that will be energized

Application	Benefits
An end joint can be applied at the end	 Easy to accomplish.
of a cable trace or when a cable trace	A stop-end module converts
is (partly) put out of operation.	a standard joint.

Extended joint > With an extension shell, the cable entry and connection space for the earth bond is extended

Application	Benefits
An extended shell offers greater spa	ace More b
to bond additional components sucl	n water s
as lead sheaths on polymeric cables	Availab
or DWA.	 Well su

D	enents
•	More bonding length and better
	water sealing

Available on single or both ends Nell suited to the petrochemical

Oil refill joint > By means of a special manifold, a connection is made between the metallic sheath and an oil reservoir

Application	Benefits
Where transitions from paper to	 Continuous
polymeric cables are required on new	 Prevents dry
construction, oil refill joints feed the	 Extending ca
paper cable to extend their life.	life

•	Continuous supply of oil
•	Prevents drying out
	Extending cable network

industry.

Extending	cable	networ
life		

Application	Туре	Cable (mm ^{2*})	Conductor size (mm²)*	Туре	Construction
12 kV	M105	Transition joint (3-core) Transition joint (3-core) Paper (3-core) Paper (3-core)	25 - 150 95 - 240 95 - 240 95 - 240	Connection 1 x lead Connection 1 x lead 1 x lead 3 x lead	M75 inner joint M85 inner joint Without inner joint Without inner joint
24 kV	M105	Transition joint (3-core) Transition joint (3-core) Paper (3-core) Paper (3-core)	25 - 95 95 - 150 95 - 150 95 - 150	Connection 1 x lead Connection 1 x lead 1 x lead 3 x lead	M75 inner joint M85 inner joint Without inner joint Without inner joint
36 kV	M105	Paper (3-core) Paper (3-core)	95 - 150 95 - 150	1 x lead 3 x lead	Without inner joint Without inner joint

* Attention: Dependent on the outer sheath diameter and selected cable module.

The above sizes concern cables that fit into the joint. Different cables on request.

Cross-bonding joint > Used where cross-bonding is required to reduce losses

Ap

Ur co

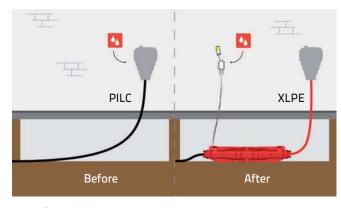
Benefits
 Reduce cable losses
 Cost savings due to less

cable losses

Voltage	Туре	Cable	Conductor size (mm²)*	Diameter conductor crossed conductors (mm²)	Max. cross section for for crossed cores (mm)
12	M75	Polymeric (1-core)	95 - 400	N/A	72
kV	M85	Polymeric (1-core)	630	N/A	82
	M105	Polymeric (1-core)	800 - 1.000	N/A	105
24 kV	M85	Polymeric (1-core)	630	N/A	82
	M105	Polymeric (1-core)	800 - 1.000	N/A	105
36	M85	Polymeric (1-core)	185 - 400	N/A	82
kV	M105	Polymeric (1-core)	630 - 1.000	N/A	105

* Attention: Dependent on the outer sheath diameter and selected cable module. The above sizes concern cables that fit into the joint. Different cables on request.

Sustainable solutions


An important objective in the electricity sector is to utilize the cable network in a sustainable manner. This can be achieved by extending the life of aging paper cables where possible. The oil refill joint offers a perfect solution.

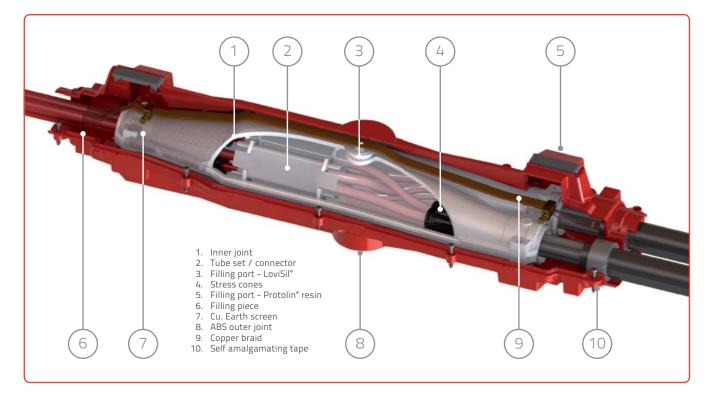
Extending cable network life span

New network sub stations are designed around switchgear for connection to polymeric cables. This requires the installation of transition joints to allow connection to existing PILC networks. In turn, this often results in disconnection from oil supplies essential to existing paperinsulated cables, thus making them susceptible to drying out and inevitable failure. Lovink Enertech has devised a special transition joint that continuously supplies oil to these cables thus preventing them from drying out.

Effective solution

A simple technique has been devised to remove a section of lead sheath without compromising the cores beneath. A special manifold, which includes a non-return valve, is then positioned over the opening and secured in place. This enables connection to an oil supply suitable for the cable concerned. Utilizing a silicone tube along with traditional couplers and pipe-work, oil can be supplied from a conveniently located reservoir allowing easy maintenance.

LoviSil® oil refill joint


Product overview LoviSil® MB Branch joints

LoviSil[®] MB Branch joints are suitable for making connections in medium voltage networks. The branch joint can be applied regardless of the main cable type. With LoviSil[®] joints, polymeric cables can be directly connected to paper or polymeric cables. No external transition joints are needed, resulting in reduced material, excavation and reinstatement costs.

Voltage	Туре	Cable	Conductor size (mm²)*	Diameter conductor crossed conductors (mm²)	Max. cross section for crossed cores (mm)
12 kV	MB85	Polymeric / Paper (1-core) Polymeric (1x3-core) Polymeric (3x1-core) Paper (1x3-core)	95 - 1.000 95 - 300 95 - 300 95 - 300	N/A 95-185 N/A 95 - 185	82 82 38 82
24	MB95	Polymeric (1x3-core) Polymeric (3x1-core) Paper (1x3-core)	95 - 300 95 - 300 95 - 300	95 - 240 N/A 95 - 240	87 40,5 87
36	MB95	Polymeric / Paper (1-core) Polymeric (3x1-core) Paper (1x3-core)	95 - 1.000 95 - 300 95 - 300	N/A N/A 240	87 40,5 87
36 kV	MB95	Polymeric / Paper (1-core)	95 - 800	N/A	87

* Attention: Dependent on the outer sheath diameter and selected cable module. The above sizes concern cables that fit into the joint. Different cables on request.

Build up LoviSil[®] MB Branch joints LoviSil[®] MB85-MB95

Dimensions		A (mm)	B (mm)
	MB85	1.280	305
	MB95	1.500	320

Optional versions

Loop joint > With a stop-end module, a standard branch joint becomes a loop joint

Application

Where a substation or switchgear is to be abandoned, the ring feeder cables laid parallel in the ground can be connected without excavation to accommodate a large loop and two straight joints. Both cables are installed on the branch side.

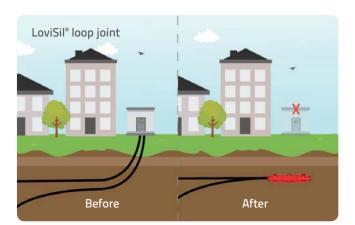
Benefits

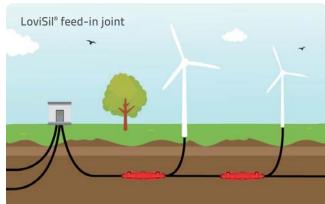
- Less excavation work
- Less cable needed
- Shorter assembly time

Feed-in joint > With a special connector a standard branch joint becomes a feed-in joint

Application

A feed-in joint can be used to connect power from new sustainable sources to existing cable runs or new radial circuits.


Benefits


- Less excavation work
- Less cable needed
- Sub station redundant
- Shorter assembly time

Sustainable applications

Application of the LoviSil® branch joints often lead to substantial cost savings, less cable and fewer cable joints are needed. When a substation is decommissioned and cables must stay in operation, the LoviSil® loop joint offers a practical solution. The normal approach for this procedure is to join the cables together by installing two cable joints plus a loop of new cable. However the LoviSil® loop joint allows the two cables to be mounted directly without an extra cable. Branch joints can accommodate a wide range of cable types, including small single core polymeric cables from wind turbines. **LoviSil® Feed- in joints** are fitted with a specially developed connector which enables jointing of small cross section source cables to large cross section radial or ring cables.

This application reduces the need for additional switchgear and sub stations. Together with saving extra cable length and extra excavation work makes the **LoviSil® branch joint** a economic investment.

LoviFlex[®] Terminations

2

LoviFlex® terminations are made of an extremely elastic silicone rubber with high tracking resistance and integrated stress grading. Due to excellent electrical properties, combined with fast assembly, these terminations of Lovink Enertech have been used successfully for many years.

Applications

LoviFlex[®] terminations are suitable for installation on all polymeric medium voltage cables connecting to switch gear and transformers.

Reliability

LoviFlex[®] silicone rubber terminations offer extra reliability compared with standard solutions such as EPDM rubber construction. This is because silicone rubber has particularly good tracking and flashover resistant properties. As well as long aging qualities, silicone rubber is extremely resistant to weather conditions and contamination due to dust and high humidity.

Tests

LoviFlex $^{\!\!\circ}$ terminations are tested and approved according to HD 629 (CENELEC).

The terminations are suitable for mechanical and compression cable lugs.

Supply

Silicone insulator with integrated stress control, silicone lubricating paste, installation instructions. The termination will be delivered as a set for three phases.

Spiral technology: benefits easy assembly Compact design: integrated stress control

No special tools needed

Program LoviFlex[®] terminations

LoviFlex® terminations are suitable for indoor (type IKE) and outdoor (type EKE) installations for 12, 24 and 36 kV applications. Due to the materials' exceptional elasticity, LoviFlex $^{\circ}$ terminations are highly range taking. A small selection will cater up to 1.000 mm².

Application inside

	Туре	Nom. Cross	Section mm ²	Diameter mm		Length mm	Shed diameter mm
		Excl. cable lug	Incl. cable lug	Min. on insulation	Max. on cable		
12 kV	IKE 12	Al/Cu 35-95 Al/Cu 95-240 Al/Cu 240-300 Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 120-300 Al/Cu 400-630 Al/Cu 630-1.000	≥ 13.8 ≥ 18.4 ≥ 25.3 ≥ 31.1 ≥ 36.8	≤ 27 ≤ 36 ≤ 50 ≤ 61 ≤ 72	265 270 310 370 370	62 62 62 62 62
24 kV	IKE 24	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 185-300 Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 120-300 Al/Cu 400-630 Al/Cu 630-1.000	≥ 13.8 ≥ 18.4 ≥ 25.3 ≥ 31.1 ≥ 36.8	≤ 27 ≤ 36 ≤ 50 ≤ 61 ≤ 72	265 270 310 370 370	62 62 62 62 62
36 kV	IKE 36	Al/Cu 10-95 Al/Cu 70-300 Al/Cu 185-400 Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 120-300 Al/Cu 400-630 Al/Cu 630-1.000	≥ 18.4 ≥ 25.3 ≥ 31.1 ≥ 31.1 ≥ 36.8	≤ 36 ≤ 50 ≤ 61 ≤ 61 ≤ 72	350 390 450 450	100 100 100 100 100

Application outside

	Туре	Nom. Cross	Section mm ²	Diameter mm		Length mm	Shed diameter mm
		Excl. cable lug	Incl. cable lug	Min. on insulation	Max. on cable		
12 kV	EKE 12	Al/Cu 35-95 Al/Cu 95-240	Al/Cu 10-95 Al/Cu 70-240	≥ 13.8 ≥ 18.4	≤ 27 ≤ 36	345 350	100 100
		Al/Cu 240-300	Al/Cu 120-300	≥ 25.3	≤ 50	390	100
		Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 400-630 Al/Cu 630-1.000	≥ 31.1 ≥ 36.8	≤ 61 ≤ 72	450 520	100 100
24 kV	EKE 24	Al/Cu 10-95 Al/Cu 50-240 Al/Cu 185-300 Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 120-300 Al/Cu 400-630 Al/Cu 630-1.000	≥ 13.8 ≥ 18.4 ≥ 25.3 ≥ 31.1 ≥ 36.8	≤ 27 ≤ 36 ≤ 50 ≤ 61 ≤ 72	345 350 390 450 520	100 100 100 100 100
36 kV	EKE 36	Al/Cu 10-95 Al/Cu 70-300 Al/Cu 185-400 Al/Cu 400-630 Al/Cu 630-1.000	Al/Cu 10-95 Al/Cu 70-240 Al/Cu 120-300 Al/Cu 400-630 Al/Cu 630-1.000	≥ 18.4 ≥ 25.3 ≥ 31.1 ≥ 31.1 ≥ 36.8	≤ 36 ≤ 50 ≤ 61 ≤ 61 ≤ 72	620 750 800 800 800	100 100 100 100 100

 \ast The above sizes concern cables that fit into the joint. Different cables on request.

Accessories

Protolin[®] Polyurethane resin

Protolin[®] 4000 > Cast resin which can be used as a mechanical insulation in medium voltage accessories

Product information

- Two-part resin based on polyurethane.
- For applications with polymeric and paper-insulated cables.
- Supplied in a foil pouch, the twin compartment sachet allows easy mixing and pouring.
- The bag is provided with spouts which makes the filling much easier.
- The fully mixed resin flows easily, searching out the smallest spaces. Whilst curing, the resin is unaffected by water or moisture in the cable.
- Available in 1700, 2550 and 3150 cc.

Tools

Slide caliper > Installation tool to establish the correct diameters when applying build-up tapes

Product information Slide mechanism, single-handed operation.

• Universally applicable, diameter from 40 to 155 mm.

Push on applicator 12/24 kV > Installation tool to position the stress cone on the cable

Product information

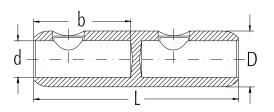
• Available for 35 and 49 mm.

Push on applicator 36 kV > Installation tool to position the stress cone on the cable

Product information

 Available as a set with 3 x applicators 30, 37, 43, 49 mm and 2 x applicator 60 mm.

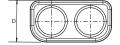
Connectors and cable lugs


Mechanical connector > Suitable for conductors of different cross sections and conductor materials

Product information

- Reliable and cost saving.
- Suitable for connections up to 36 kV.

Number	
of bolts	

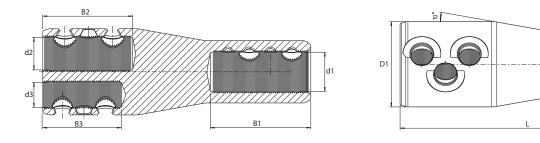

Description	Number	Dimensions in mm					
Description	of bolts	L	d	D	Ь		
	2	70	125	27	22		
LEM 16-95	2	70	12,5	24	32		
LEM 50-150	2	85	15,5	30	35		
LEM 25-150/16-95	2	85	15,5/12,5	30	35/32		
LEM 70-240	4	120	20	33	56		
LEM 95-240	4	120	20	33	56		
LEM 95-240/16-95	3	120	20/12,5	33	56/32		
LEM 120-300	4	142	25	38	67		
LEM 120-300/16-95	3	142	25/12,5	38	67/132		
LEM 120-300/95-240	4	142	25/20	38	67/156		
LEM 120-300/400-630	5	200	34/25	52	94/67		
LEM 185-400	6	170	26	42	82		
LEM 185-400/95-240	5	170	26/20	42	82/56		
LEM 300-500	6	200	34	52	94		
LEM 400-630	6	200	34	52	94		
LEM 630-1000	8	220	41	65	105		
LEM 800-1200	8	220	45	72	105		
LEM 800-1200/400-630	7	220	45/34	72	105/94		

* The above sizes concern cables that fit into the joint. Different cables on request.

Mechanical branch connector > Connects conductors in branch joints

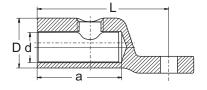
Splittable version

Description	Number	Dimensions in mm					
Description	of bolts	D	L	b2			
LEB 70-240	6	35	140	34			
LEB 120-300	7	38	198	35,5			



* The above sizes concern cables that fit into the joint. Different cables on request.

Description	Number	Dimensions in mm								
Description	of bolts	d1	d2	d3	D1	D2	L.	B1	B2	B3
LEB 630-1000 / 630-1000+95-240	8	41	41	20	95	65	280	105	105	56
LEB 3x300-630	7	34	34	34	94	94	280	105	94	94
LEB 1x630 / 2x120-300	7	34	25	25	80	52	280	94	67	67
LEB 1x1000 / 1x630 + 1x400	7	41	34	26	90	65	280	105	94	82


* The above sizes concern cables that fit into the joint. Different cables on request.

For class-5 conductors (highly stranded) alternative shear bolts and ferrules are available on request.

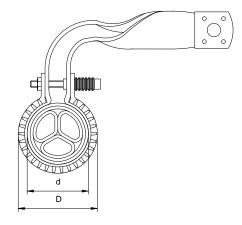
Mechanical cable lug > Connects conductors of different cross sections and conductor materials

Product information

- Reliable and cost saving.
- Suitable for connections up to 36 kV.
- With 1 or 2 removable shear-off head bolts.

Description	Number	Dimensions in mm						
Description	of bolts	а	d	D	L			
LEC 16-95	1	32	12,5	24	60			
LEC 50-150	1	35	15	30	65			
LEC 95-240	2	56	20	95	95			
LEC 120-300	2	67	25	100	100			
LEC 185-400	3	79	26	115	115			
LEC 400-630	3	94	34	130	130			

* The above sizes concern cables that fit into the joint. Different cables on request.


Clamps and roll springs

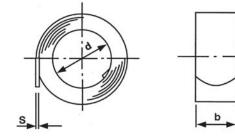
LDV clamp > Solderless earth connection clamp for making an electrical connection of the lead sheath with the copper earth braid

Product information

- Suitable for use in cable joints and terminations on paper insulated cables up to 36 kV.
- Can be applied in open air, cast resin or bitumen.
- Successfully tested on PILC cable at 14.6 kA/1sec, (250 MVA).

Description	Diameter over le	Clamp diameter (mm)	
Description	d _{min} d _{max}		D
LDV 35	26	33	45
LDV 50-70	33	39	51
LDV 95	39	45	57
LDV 150	45	51	63
LDV 240	51	59	70
LDV 300	59	65	77

* The above sizes concern cables that fit into the joint. Different cables on request.


Roll springs

Roll spring > For making an electrical connection to lead sheath or Cu tape screen with the copper earth braid

Product information

• Made of non-corroding special steel.

		Application range (mm)		Dimensions (mm)		
Description	Min.	Max.	d	Ь	S	n
RF 1	13	22	11,5	16,0	0,10	6
RF 2	17	29	13,5	16,0	0,15	6
RF 3	22	37	17,0	16,0	0,20	6
RF 4/5	30	70	24,0	19,0	0,30	6
RF 6	56	94	42,5	20,0	0,50	6

* The above sizes concern cables that fit into the joint. Different cables on request.

31

Cleaning materials

Dispenser with cable cleaning cloths > Saturated cleaning cloths in plastic container

Product information

- Mixture of solvents, consisting of iso-paraffin hydrocarbons.
- It does not contain benzene, hexane and chlorinated hydrocarbons.
- The aromatic content is very low, maximum 0.05 (volume)percent.
- Dry cloths also available.

Cable cleaning cloths > Saturated cleaning cloths single packed

Product information

- Mixture of solvents, consisting of iso-paraffin hydrocarbons.
- It does not contain benzene, hexane and chlorinated hydrocarbons.
- The aromatic content is very low, maximum 0.05 (volume)percent.
- Also available as set: 4 saturated and 2 dry cleaning cloths.

Wrapping tapes

Self-amalgamating build-up tape > To enlarge cable diameters to meet the size of cable joints

Product information

- Cold application.
- Complete seal, even on the overlap.
- Long aging.
- Good electrical resistance.
- Resistant to acids, alkalis, salt solutions and all corrosive substances in the ground.
- Dimensions: 4 m x 40 mm x 1 mm.

Self-amalgamating insulation tape 128 > Provide protection against accidental contact with uninsulated parts

Product information

- Resistivity: 1015 Ω cm.
- Dielectric constant: 2.3.
- DIN 53 482 and DIN 53 483.
- Dimensions: 5 m x 20 mm x 1 mm.

Self-amalgamating conductive tape K > To provide stress control and shielding in joints and terminations

Product information

- Resistivity 103 Ω cm.
- Tear strength: 3 N/mm².
- Ultimate elongation: 200%.
- DIN 53 482 and DIN 53 455.
- Dimensions: 2.3 m x 19 mm x 0.75 mm / 4.6 m x 19 mm x 0.75 mm.

Self-amalgamating insulation tape SVIM > To provide insulation in cable terminations and straight joints

Product information

- Resistivity 1015 Ω cm.
- Tear strength: 3 N/mm².
- Ultimate elongation: 800%.
- Dielectric constant: 2.8.
- Service temperature: -40 °C to 100 °C.
- DIN 53 482, DIN 53 455, DIN 53 481 and DIN 53 483.
- Dimensions: 4.5 m x 19 mm x 0.75 mm / 10.0 m x 19 mm x 0.75 mm.

Wrapping tapes

Foam tape > To adjust the cable diameter for the use of foam rings in cable joints

Product information

- Single sided sticking tape
- Dimensions: 4 m x 25 mm x 2 mm
- Dimensions : 4 m x 50 mm x 2 mm

Lovink Enertech has made every effort to ensure the reliability and accuracy of the information contained in this catalogue at the time of going to press. The company shall not be held liable for the accuracy and completeness of this document. Lovink Enertech B.V. reserves the right to make changes in product and documentation specifications at any time and without notice.

Lovink Enertech B.V. Lovinkweg 3 P.O. Box 111 7060 AC Terborg The Netherlands T +31 (0)315 33 56 00

E info.le@lovink.com